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ABSTRACT

We develop a model to investigate the behavior of atomic coupler con-
sists of two waveguides, each of which includes a localized or a trapped
atom with a two-mode pair coherent state source. The waveguides are
placed close enough to each other to allow energy exchange between
them. The two atoms, in the different waveguides, are located adjacent
to each other. In each waveguide, one mode propagates along and inter-
acts with the atom inside in a standard way as the Jaynes- Cummings
model (JCM). The atom-mode system, in each waveguide, interacts with
the other one via the evanescent wave. Pair coherent states (PCS) are
one of the most important states in quantum information theory since
it includes sufficient entanglement causing the violation of the Bell in-
equality. Moreover, the PCS possesses prominent nonclassical properties
such as sub-Poissonian statistics, correlation in the number fluctuations,
squeezing and violations of the Cauchy Schwartz inequalities
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1. Introduction

The quantum directional coupler is a device composed of two (or more)
waveguides placed close enough to allow exchange of energy between them via
evanescent waves(Jensen, 1982). The rate of flow of the exchanged energy can
be controlled by the device design and the intensity of the input flux. The
outgoing fields from the coupler can be measured in standard ways to quantify
the nonclassical effects(Faisal , 2010). Quite recently, this device has attracted
much attention in optics communication and quantum computing network,
which require data transmission and ultra-high-speed data processing. Fur-
thermore, the directional coupler has been experimentally implemented, e.g.,
in planar structures, dual optical fibers and certain organic polymers. For
more details related to the quantum properties of the fields in the directional
couplers the reader can consult and the references therein. The interaction
between the radiation field and the matter (i.e. atom), namely the Jaynes
Cummings model (JCM)(Jaynes , 1963),(Perina, 2000) is an important topic
in quantum optics and quantum information theories. The simplest form of
the JCM is a two-level atom interacting with a single-mode radiation field.
The JCM is a rich source of the nonclassical effects, e.g., the revival collapse
phenomenon (RCP), sub-Poissonian statistics and quadrature squeezing. Fur-
thermore, the JCM has been experimentally implemented by various means
such as the one-atom mazer, NMR refocusing, the Rydberg atom in a super-
conducting cavity, the trapped ion and the micromaser. Various extensions to
the JCM have been reported including two two-level atoms interacting with ra-
diation field(s).Trapped atoms or molecules are promising systems for quantum
information processing and communications. They can serve as convenient and
robust quantum memories for photons, providing thereby an interface between
static and flying qubits. Coupling cold atoms to a radiation field sustained
by an optical waveguide has already been addressed in various contexts. For
example, hollow optical glass fibers have been used to guide atoms over long
distances, specifically when employing a red detuned light field filling out the
hollow core. A substrate-based atom waveguide can also be realized by us-
ing guided two-color evanescent light fields. Moreover, the coupling of atomic
dipoles to the evanescent field of tapered optical fibers has been demonstrated
in (Faisal, 2008),(Bennet, 1993),(Eberly, 2007),(Faisal, 2003),(Meunier, 2005).

2. Model Formalism

Now we are in a position to develop the model of AQC with PCS, which is
the main object of the project. The atomic coupler consists of two waveguides,
each of which includes a localized and/or a trapped atom. The waveguides are
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Simulation of Absorption Spectrum

placed close enough to each other to allow interchanging energy between them.
The two atoms (in the different waveguides) are located very adjacent to each
other. In each waveguide one mode propagates along and interacts with the
atom inside in a standard way as the JCM. The atom-mode in each waveguide
interacts with the other one via the evanescent wave. The fields exited from the
coupler can be examined as single or compound modes by means of homodyne
detection to observe the squeezing of vacuum fluctuations, or by means of a set
of photodetectors to measure photon antibunching and sub-Poissonian photon
statistics in the standard ways. The model will be based on the framework of
the rotating wave approximation (RWA) the Hamiltonian describing the AQC
with the pair coherent states can be expressed as:

Ĥ

~
= Ĥ0 + ĤI , Ĥ0 =

2∑

j=0

ωj â
†
j âj +

ωa
2

(σ̂(1)
z + σ̂(2)

z ), (1)

ĤI =
2∑

j=1

λj(âj σ̂
(j)
+ + â†j σ̂

(j)
− ) + λ3(â1â

†
2σ̂

(1)
+ σ̂

(2)
− + â†1â2σ̂

(1)
− σ̂

(2)
+ ), (2)

where Ĥ0 and ĤI are the free and the interaction parts of the Hamiltonian,
σ̂
(j)
± and σ̂

(j)
z are the Pauli spin operators of the jth atom (j = 1, 2); âj (â†j)

is the annihilation (creation) operator of the jth-mode with the frequency ωj
and ωa is the atomic transition frequency (we consider that the frequencies of
the two atoms are equal) and λ1 (λ2) is the atom-field coupling constant in the
first (second) waveguide in the framework of the JCM. The interaction between
the modes in the two waveguides occurs through the evanescent wave with the
coupling constant λ3. This term is the only one, which is conservative and can
execute switching between the two waveguides. Thus it plays an essential role
in the behavior of the AQC.

We should stress that the switching mechanism occurs through the two
JCMs (in the two waveguides) and can be obtained by applying the RWA
in each individual waveguide. In other words, the quantityλ3(â1â

†
2σ̂

(1)
+ σ̂

(2)
− +

â†1â2σ̂
(1)
− σ̂

(2)
+ is non -conservative and hence it is cancelled out. Finally, the

treatment of the switching mechanism in (1) is related to the notion of cou-
pler; however, the existence of atoms in the waveguides has been taken into
account. In (1) the treatment is considered only at the moment when the
two fields interacting with atoms in the waveguides. Also when we treat the
atoms (fields) classically the Hamiltonian (1) tends to that of the linear direc-
tional coupler (two-atom interaction). The interaction of two two-level atoms
with the two modes has been considered in the optical cavity earlier (Faisal,
2008),(Eberly, 2007),(Casagrande, 2007), however, in the sense different from
that presented above. For instance, as a sum of two separate Jaynes-Cummings
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Hamiltonians to investigate the entanglement as well as the entanglement trans-
fer from a bipartite continuous-variable (CV) system to a pair of localized qubits
(Casagrande, 2007). Also, the quantum properties of the system of two two-
level atoms interacting with the two nondegenerate cavity modes when the
atoms and the field are initially in the atomic superposition states and the
pair-coherent state has been investigated in.

Next, we evaluate the wave function for the Hamiltonian (1). We consider
two types of the initial field states, namely, two-mode squeezed vacuum state
and pair coherent state. The pair-coherent state(Satyanarayana, 1989) is one of
the most important states in quantum information theory since it includes suf-
ficient entanglement causing the violation of the Bell inequality. Moreover, the
PCS possesses prominent nonclassical properties such as sub-Poissonian statis-
tics, correlation in the number fluctuations, squeezing and violations of the
Cauchy Schwartz inequalities [18]. Additionally, the PCS is a non-Gaussian
state and its Wigner function exhibits significant negative values( Agarwal,
1986). The PCS has been generated by various means. For instance, it can be
generated via the competition of four-wave mixing and two-photon absorption
in a nonlinear medium(Zheng , 2001). Also the PCS has been realized in the
trapped ion system (Zheng , 2001). In this case the trapped ion is excited
bichromatically by three laser beams along different directions in the xy plane
of the ion trap. If the initial vibrational state of motion of the ion is prepared
in a Fock state, then the steady state of the system is a pure state given by a
product of the atomic ground state with the PCS of the vibrational motion . A
similar scheme has been given in(Zheng , 2001). Mathematically, the PCS is an
eigenstates for both pairs of annihilation operator and the number difference
operator. This can be expressed as(G.S., 1986)

|ξ, q〉 = Nq

∞∑

n=0

ξn√
n!(n+ q)!

|n, n+ q〉, (3)

Nq =

∞∑

n=0

[
|ξn|2n

n!(n+ q)!
]−1/2, whereξ = |ξ| exp(iφ1) (4)

The two-mode squeezed vacuum state (TMS) has the form:

|r〉 =
1

cosh( r2 )

∞∑

n=0

(tanh r/2)n exp(iφ2n)|n, n〉, (5)
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whereφ1 is the phase. Throughout the calculation we use the generic state:

|ψf (0)〉 =
∞∑

n=0

Cn|n, n+ q〉, (6)

where the probability amplitude Cn can take either one of the those of (2)
and (3). Also for the sake of simplicity we take φj = 0; j = 1; 2.

3. Derivation of the Wavefunction

We consider two types of the initial atomic states as

|ψ1(0)〉a = sin θ1|e1, e2〉+ cos θ1|g1, g2〉 (7)

|ψ2(0)〉a = sin θ2|e1, e2〉+ cos θ2|g1, g2〉, (8)

where the subscript a denotes the atomic system;|ej〉 and |gj〉 for the excited
and the ground atomic states of the jth atom, respectively. The variables θ1
andθ2 are phases, which can be specified to provide different forms of the initial
atomic states. we restrict the study to the resonance case2ωa = ω1 +ω2 , also,
one can easily prove that[Ĥ0, ĤI ] . We use the technique given in (Faisal , 2010)
for solving the dynamical equation of the system. This technique is sensitive for
the initial atomic states. Therefore we have to solve the Schrdingers equation
for times. We write down the analytical solution for these cases as follows.

i) For the atomic states|e1, e2〉 the wavefunction takes the form

| Ψ1(t)〉 =

∞∑

n=0

Cn

[
X

(1)
1 (t, n, n+ q) | e1, e2, n, n+ q〉+X

(1)
2 (t, n, n+ q) | e1, g2, n, n+ q + 1〉

+ X
(1)
3 (t, n, n+ q) | g1, e2, n+ 1, n+ q〉+X

(1)
4 (t, n, n+ q) | g1, g2,n+ 1, n+ q + 1〉

]
.(9)

From the initial conditions, the exact forms of the coefficients Xj can be
expressed as:
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X
(1)
1 (t, n, n+ q) =

1

2
exp(i

t

2
c
(1)
2 )

[
cos(tΩ

(1)
− )− i c

(1)
2

2Ω
(1)
−

sin(tΩ
(1)
− )

]

+
1

2
exp(−i t

2
c
(1)
2 )

[
cos(tΩ

(1)
+ ) + i

c
(1)
2

2Ω
(1)
+

sin(tΩ
(1)
+ )

]
,(10)

X
(1)
2 (t, n, n+ q) = − i sin(tΩ

(1)
− )

2Ω
(1)
−

[λ2 − λ1]
√
n+ 1 exp(i

t

2
c
(1)
2 )

− i sin(tΩ
(1)
+ )

2Ω
(1)
+

[λ2 + λ1]
√
n+ 1 exp(−i t

2
c
(1)
2 ), (11)

X
(1)
3 (t, n, n+ q) =

i sin(tΩ
(1)
− )

2Ω
(1)
−

[λ2 − λ1]
√
n+ 1 exp(i

t

2
c
(1)
2 )

− i sin(tΩ
(1)
+ )

2Ω
(1)
+

[λ2 + λ1]
√
n+ 1 exp(−i t

2
c
(1)
2 ), (12)

X
(1)
4 (t, n, n+ q) =

1

2
exp(i

t

2
c
(1)
2 )

[
− cos(tΩ

(1)
− ) + i

c
(1)
2

2Ω
(1)
−

sin(tΩ
(1)
− )

]

+
1

2
exp(−i t

2
c
(1)
2 )

[
cos(tΩ

(1)
+ ) + i

c
(1)
2

2Ω
(1)
+

sin(tΩ
(1)
+ )

]
,(13)

where

c
(1)
1 = 2λ1λ2

√
(n+ 1)(n+ q + 1), c

(1)
2 = λ3

√
(n+ 1)(n+ q + 1), (14)

Ω
(1)
± =

√
c
(1)2
2

4
+ (λ1

√
n+ 1± λ2

√
n+ q + 1)2. (15)

ii)For the atomic states |g1, g2〉 the wavefunction takes the form

| Ψ2(t)〉 =
∞∑

n=0

Cn

[
X

(2)
1 (t, n, n+ q) | e1, e2, n− 1, n+ q − 1〉+X

(2)
2 (t, n, n+ q) | e1, g2, n− 1, n+ q〉

+ X
(2)
3 (t, n, n+ q) | g1, e2, n, n+ q − 1〉+X

(2)
4 (t, n, n+ q) | g1, g2,n, n+ q〉

]
, (16)
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From the initial conditions, the exact forms of the coefficients Xj can be
expressed as:

X
(2)
1 (t, n, n+ q) =

1

2
exp(i

t

2
c
(2)
2 )

[
− cos(tΩ

(2)
− ) + i

c
(2)
2

2Ω
(2)
−

sin(tΩ
(2)
− )

]

+
1

2
exp(−i t

2
c
(2)
2 )

[
− cos(tΩ

(2)
+ ) + i

c
(2)
2

2Ω
(2)
+

sin(tΩ
(2)
+ )

]

, X
(2)
2 (t, n, n+ q) =

i sin(tΩ
(2)
− )

2Ω
(2)
−

[
(λ2
√
n+ q − λ1

√
n) exp(i

t

2
c
(2)
2 )

]

− i sin(tΩ
(2)
+ )

2Ω
(2)
+

[
(λ2
√
n+ q + λ1

√
n) exp(−i t

2
c
(2)
2 )

]

, X
(2)
3 (t, n, n+ q) =

−i sin(tΩ
(2)
− )

2Ω
(2)
−

[
(λ2
√
n+ q − λ1

√
n) exp(i

t

2
c
(2)
2 )

]

− i sin(tΩ
(2)
+ )

2Ω
(2)
+

[
(λ2
√
n+ q + λ1

√
n) exp(−i t

2
c
(2)
2 )

]

, X
(2)
4 (t, n, n+ q) =

1

2
exp(i

t

2
c
(2)
2 )

[
cos(tΩ

(2)
− )− i c

(2)
2

2Ω
(2)
−

sin(tΩ
(2)
− )

]

+
1

2
exp(−i t

2
c
(2)
2 )

[
cos(tΩ

(2)
+ ) + i

c
(2)
2

2Ω
(2)
+

sin(tΩ
(2)
+ )

]
(17)

where

c
(2)
1 = 2λ1λ2

√
(n)(n+ q + 1), c

(2)
2 = λ3

√
(n)(n+ q + 1), (18)

Ω
(2)
± =

√
c
(2)2
2

4
+ (λ1

√
n± λ2

√
n+ q)2. (19)

iii) For the atomic states|g1, e2〉 the wavefunction takes the form

| Ψ3(t)〉 =

∞∑

n=0

Cn

[
X

(3)
1 (t, n, n+ q) | e1, e2, n− 1, n+ q − 1〉+X

(3)
2 (t, n, n+ q) | e1, g2, n− 1, n+ q + 1〉

+ X
(3)
3 (t, n, n+ q) | g1, e2, n, n+ q〉+X

(3)
4 (t, n, n+ q) | g1, g2,n, n+ q + 1〉

]
, (20)
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From the initial conditions, the exact forms of the coefficients Xj can be
expressed as:

X
(3)
1 (t, n, n+ q) =

i sin(tΩ
(3)
− )

2Ω
(3)
−

[λ2
√
n+ q + 1− λ1

√
n] exp(−i t

2
c
(3)
2 )

− i sin(tΩ
(3)
+ )

2Ω
(3)
+

[λ2
√
n+ q + 1− λ1

√
n] exp(−i t

2
c
(3)
2 ),

X
(3)
2 (t, n, n+ q) = −1

2
exp(i

t

2
c
(3)
2 )

[
cos(tΩ

(3)
− ) + i

c
(3)
2

2Ω
(3)
−

sin(tΩ
(3)
− )

]

+
1

2
exp(−i t

2
c
(3)
2 )

[
cos(tΩ

(3)
+ ) + i

c
(3)
2

2Ω
(3)
+

sin(tΩ
(3)
+ )

]
,

X
(3)
3 (t, n, n+ q) =

1

2
exp(i

t

2
c
(3)
2 )

[
cos(tΩ

(3)
− ) + i

c
(3)
2

2Ω
(3)
−

sin(tΩ
(3)
− )

]

+
1

2
exp(−i t

2
c
(3)
2 )

[
cos(tΩ

(3)
+ )− i c

(3)
2

2Ω
(3)
+

sin(tΩ
(3)
+ )

]
,

X
(3)
4 (t, n, n+ q) = − i sin(tΩ

(3)
− )

2Ω
(3)
−

[λ2 −
√
n+ q + 1 + λ1

√
n] exp(−i t

2
c
(3)
2 )

− i sin(tΩ
(3)
+ )

2Ω
(3)
+

[λ2
√
n+ q + 1− λ1

√
n] exp(−i t

2
c
(3)
2 ),

(21)

where

c
(3)
1 = 2λ1λ2

√
n(n+ q + 1), c

(3)
2 = λ3

√
n(n+ q + 1), (22)

Ω
(3)
± =

√
c
(3)2
2

4
+ (λ1

√
n± λ2

√
n+ q + 1)2. (23)
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iv) For the atomic states |e1, g2〉 the wavefunction takes the form

| Ψ4(t)〉 =
∞∑

n=0

Cn

[
X

(4)
1 (t, n, n+ q) | e1, e2, n, n+ q〉+X

(4)
2 (t, n, n+ q − 1) | e1, g2, n, n+ q〉

+ X
(4)
3 (t, n, n+ q) | g1, e2, n+ 1, n+ q − 1〉+X

(4)
4 (t, n, n+ q) | g1, g2,n+ 1, n+ q〉

]
,(24)

From the initial conditions, the exact forms of the coefficientsXJ can be ex-
pressed as:

X
(4)
1 (t, n, n+ q) =

i sin(tΩ
(4)
− )

2Ω
(4)
−

[λ1
√
n− 1− λ2

√
n+ q] exp(−i t

2
c
(4)
2 )

− i sin(tΩ
(4)
+ )

2Ω
(4)
+

[λ1
√
n+ 1− λ2

√
n+ q] exp(−i t

2
c
(4)
2 ),

X
(4)
2 (t, n, n+ q) = −1

2
exp(i

t

2
c
(4)
2 )

[
cos(tΩ

(4)
− ) + i

c
(4)
2

2Ω
(4)
−

sin(tΩ
(4)
− )

]

+
1

2
exp(−i t

2
c
(4)
2 )

[
cos(tΩ

(4)
+ )− i c

(4)
2

2Ω
(4)
+

sin(tΩ
(4)
+ )

]
,

X
(4)
3 (t, n, n+ q) =

1

2
exp(i

t

2
c
(4)
2 )

[
cos(tΩ

(4)
− ) + i

c
(4)
2

2Ω
(4)
−

sin(tΩ
(4)
− )

]

+
1

2
exp(−i t

2
c
(4)
2 )

[
cos(tΩ

(4)
+ )− i c

(4)
2

2Ω
(4)
+

sin(tΩ
(4)
+ )

]
,

X
(4)
4 (t, n, n+ q) = − i sin(tΩ

(4)
− )

2Ω
(4)
−

[λ1
√
n+ q + 1− λ2

√
n] exp(−i t

2
c
(4)
2 )

− i sin(tΩ
(4)
+ )

2Ω
(4)
+

[λ1
√
n+ 1 + λ2

√
n+ q] exp(−i t

2
c
(4)
2 ),

(25)

where

c
(4)
1 = 2λ1λ2

√
(n+ 1)(n+ q), c

(4)
2 = λ3

√
(n+ 1)(n+ q), (26)

Ω
(4)
± =

√
c
(4)2
2

4
+ (λ1

√
n+ 1± λ2

√
n+ q)2. (27)
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4. Conclusion

We have developed, model of the AQC and wavefunction with pair coherent
states, the exact solution for the equations of motion and the switching mech-
anism in AQC is sensitive to the type of the initial atomic states. Based on
the information given in literature review, one can note that the AQC is within
the reach of current technology. Also it may be of interest in the framework
of quantum information such as data transmission (Faisal , 2010), quantum
gates(Zheng , 2001) as well as entanglement generation
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